How accurate is your house energy model compared to tools like Rem/RATE?

The energy model I use I built myself. There are lots of software packages out there but the reviews of them are terrible. They have a very poor track record of predicting the real world energy performance of any particular house. See this review I wrote a couple of years ago:

Zero-Energy Ready Home (ZERH) and Home Energy Rating System (HERS) 

The Department of Energy offers its Zero Energy Ready Home (ZERH) program but it is more aimed at certifying builders rather than buildings. Hence, just like the PassiveHaus and LEED programs it is focused on new construction, not how to go zero on your existing home. The ZERH program relies heavily on EnergyStar standards for appliances and windows and the HERS (Home Energy Rating System) for performance. HERS is focused on energy use relative to a benchmark house (i.e., how your home compares to a model house of the same floor area)  rather than minimizing energy or spending. A HERS rating is only available on new houses, not for existing ones. A review of the HERS rating system in Home Energy magazine found that,  in practice, “there was no clear relationship between the rating score of an individual home and actual energy cost.” Hmmm.

My model began with simple curiosity. I began with just correlating (drawing a line graph) the actual energy (heating fuel plus electricity) that was used every day in my home (I have two years worth of daily data) and the average outside temperature. The r-squared (statistical correlation) of these models (there were 5 of them – one built each time I added one of the fab four) was over 80%. This is a very high correlation for a model that left out known influencers of energy demand like solar heat gain and drafts. Nevertheless, despite these obvious weaknesses, the outside temperature was by far the biggest driver of energy use and hence energy bills. This was an “ahha” moment.
In a separate “ahha” moment I realized that the u-value for windows was not just an arbitrary scale (unlike say a HERS rating) but actually was the rate of energy flow across the window. Since I could approximate the R-values of all my walls, attic and basement, (and the u-value is 1/R value) I could build a mathematical model of how the energy flowed out of my house. Basic physics requires that over any period longer than a few hours, the energy flowing into a house must equal the energy flowing out. This allowed me to build a predictive model of how the energy flows into and out of a house. Since I know the energy flowing in (the combined energy in the electricity plus that burned as heating fuel) I could anchor the model to reality before we even got started. Hence, the inaccuracies in my model are going to be in allocating where the energy flows out (e.g., I might over overestimate the energy flowing out through the walls and underestimate the energy flowing out through the attic) but the overall amount of energy lost must be correct because energy cannot be created or destroyed, the energy lost by your house must be equal to the energy you put in. Put another way, if you cut off the electricity and turned off the heating, your house would eventually reach the outside temperature.

As far as I know, all the other software modeling packages out there start with modeling the thermal envelope of the house. They then model the heating inputs and then hope that they have got it right. One of the most respected models out there is Rem/RATE. I have repeatedly asked the owners of this software for data on how accurate it is in real-world situations. They have never answered my questions. The most that they were willing to say is that “it meets the standards”, but could not even tell me what the standards were. There is almost no published data on the performance of Rem/RATE software. The only data that I have been able to find is the following chart from 2009:

Although the average prediction of the model (which is not plotted on the graph, the straight line is what at 100% r-squared would look like – clearly the model is no where near 100% r-squared, and they never publish this most basic statistic) it is obvious that there is enormous error in the predictions for one house vs another. In some cases the error is equal to the mean value! We use models to predict the heating or cooling load for one individual house, not the average of thousands of homes. Hence, I really doubt the value of Rem/RATE for helping homeowners cut their bills and carbon footprints. The HERS rating systems (which is reviewed negatively in the Home Energy magazine article that I quote above) is built on the Rem/RATE software.  I, and Home Energy magazine, are not the only one with these concerns, see this quote below from the same article:

“Of course, modeling older homes and heating, water heating, lights, and appliance loads is a different matter, and the divergence between modeled and actual energy consumption may be quite different. According to Blasnik, “I know from experience that many energy modeling tools—REM included—often do a poor job of modeling heating loads in older, leaky, poorly-insulated homes.”

 And yet, cutting energy use on “older, leaky, poorly-insulated homes” is exactly the problem we need to overcome! 

So I built my own model, and it not only predicted my actual annual heating bills to within 10% of the actual bills but it has proven itself in practice with all of my consulting clients. It has enabled me to make predictions of the real-world impact on both the energy bills and the financial bills for actual changes to that home like adding insulation or adding triple-glazed windows. This is why I do not use any off-the-shelf energy modeling software. They simply have a poor track record of predicting real-world energy and financial performance on houses such as those most people live in. 

If you use one of these software packages please let me know how you get on. I welcome any feedback that I can use to improve the model.

Passive swimming pool heating and pool pumps

Q: We currently have a Hayward H250 natural gas heater on our 16’ X 28’ In ground pool and have thought about replacing it with a heat pump. Several years ago I installed a 2 speed pump on the pool and we now save a lot of kilowatts by using the lower speed. However when we want to heat the water we must run the pump on high speed to meet the gas heaters minimum pressure requirement. It’s not really much of a problem because we only use the pool from mid May till mid September and with the solar cover on it holds the heat in pretty good unless we have some unusually cool weather. We also have what I call an indirect solar heating system on the pool that adds a little extra heat as well so we don’t have to run the gas heater very much once we get the water up to temperature. As such I was wondering if the heat pump pool water heater that you use requires you to run your pool pump on high speed to keep your water warm? 

My indirect solar pool heating system consists of 400’ of polybutylene tubing that I put in the concrete that surrounds the pool. I feed it with pool water coming off a tee fitting that I installed after the filter but before the heater. Of course I have a ball valve installed so that I can shut it off at night. Once the water exits the 400’ of tubing that is buried in the concrete it just gravity flows back into the pool. I can send you som photos of it if you’re interested in learning more about it. Another benefit of using this indirect solar system or maybe we should call it a reverse radiant system is that it keeps the concrete a little cooler on those very hot sunny days. My grandkids really appreciate that.

A: his sounds like a well thought out installation – I like the passive pool heater which heats the water and cools the deck, a very nice two-for! I think this would work on most pool decks, but obviously you need to do this from the start. If I were designing a pool from the start I would also connect the pool heat-pump heater to the house AC system, but that is a different subject, you can read more about it here if you like:
Our pool heat pump is made by AquaCal and it has proven to be both reliable and efficient. When we installed it, we left the old propane heater in place but we no longer use it at all. If it did not cost me money to take it out, I would have taken it out by now. 
The heat-pump pool heater does have a minimum water-flow requirement to work and on our pool and it is at about 1,400 rpm on the variable-speed pump motor for the water-circulating pump. I usually set the water pump at 2,000 rpm so that it circulates the entire pool volume once per 24 hours, which is necessary to keep the pool water filtered. So it is usually enough flow to allow the heater to come on. However, if the skimmers and filter are clogged, the heat pump will shut down because the water flow is insufficient even at 2,000 rpm.  
The pool-water circulating pump now runs 24/7 at 2,000 rpm compared to the old fixed-speed motor that ran at 3,450 rpm about 12 hours a day. This alone is saving me about 75% of the electricity used to run the pool. If you already have a 2-speed motor it is probably not going to save you a lot more money to go with a variable-speed motor. But when you need to replace the pump, I would recommend a variable-speed one as then you can set it to the lowest flow rate needed to circulate the entire pool volume in 24 hours. There is a lot more information on how we got to a zero-carbon footprint on our pool in the book Zero Carbon Pool which you can order here:

Passive House (PassivHaus) vs. Green Zero Carbon Houses

Q1: What would be the difference between Passive House and Green Zero Carbon houses? 

A: PassivHaus focuses on passive solar gain as a big part of its energy saving. I do not. Passive solar gain from big south-facing windows leads to massive overheating on sunny days in winter which leaves people using their AC in winter, which is insane. Windows (good ones are R4-5) are less insulating than a wall (a bad one is R12) so any time you have a window rather than a wall, you have heat leaking out in winter and heat leaking in in summer. If you have big windows you have big holes in your thermal envelope. PH also is a philosophy of perfectionism. I am totally pragmatic and have no ideology. I look FIRST at what saves money and makes a good return on investment. PH does not look at cost effectiveness at all. This is why the PH movement has really struggled to become established in over 30 years of trying. At the end of the day PH is expensive to implement and very time consuming because of their detailed audit requirements. Frankly, it is also a lot of hassle to do everything to the Germanic standards of perfection and record everything in their software package (the PassivHaus Planning Package), which is so complicated it takes days of training to get certified to use it. Also, PH makes no accounting for where the house is located (you may have noticed that Canada has colder winters than Florida but the PH standard is the same in all locations) or how big the house is. Both location and size are key drivers of energy use and energy efficiency. PH has no standard for a renovation, it only applies to new construction, which means it is irrelevant to the 99% of all houses that are already built each year. Finally, the PH emphasis on air-tight construction has led to excess condensation and mold in PH construction. My fab four recipe was developed for retrofits, but when applied to new construction it is cheaper and easier to implement than on a renovation. See my post here:
Also see this article on better ways to measure energy efficiency:

Q2. Is there any certification to build Green Zero Carbon homes like Passive homes? 

A: If you use my Zero Carbon Home consulting service then I will certify the house.

Q3. As far as cost comparison which would be less costly and more benefits value v/s money

A: I do not yet have the side-by-side data to prove this, but since I start with cost-effectiveness I think it is likely that a Green Zero Carbon house is more cost-effective than a PassivHaus.

Q4. Any other thing that you would like to highlight and add from your experience.

A: Overall, I think my approach is practical and sensible. I am also completely independent and am not paid by or employed by any manufacturer or installer in the industry.

Adding insulation to the outside of a wall

Q: I watched a presentation of yours a few weeks ago, the one sponsored by Sherborn and Holliston. Impressive and informative…many thanks.
As a result of the presentation I’m interested in adding 2” insulation board, as well as Aerogel, when I re-side the house. My wife does not like foam off-gassing, so we will leave our fiberglass batting alone and add the insulation board outside of it.
There are LOTS of insulation panel types to choose from. Any recommendations on which are best?
In your presentation you mentioned the aesthetic problem with adding 2” or 4” insulation boards, i.e. that they strand the window a few inches inside the siding. I wonder if this problem could be overcome by cutting the insulation board surrounding the windows into picture frame dimensions by making – a 3-d mitre cuts of the insulation at the window corners. One would end up with thin insulation board at the edge of the windows, but gain a lot of insulation everywhere else.
Any thoughts much appreciated.

A: You can certainly do this kind of mitre cut to lessen the impact of installing the insulation. If you are adding only 2” it might still look good. I think it is best to discuss this with the window installer. 
The Aerogel product has the best R value per inch at R10, so 1” has the same insulation as a 2” ISO board, but it’s only an inch deep. It is more expensive psf that ISO board. I do not know what it’s flammability rating is though. 
A more fire-proof alternative to adding the foam is to pull out the fiberglass and replace it with rockwool batts (Roxul comfortbatt is the most widely available). It is about R4 per inch vs R3 for fiberglass. Rock wool cannot burn (it is literally strands of melted rock) so it is better fireproofing. You can add a 1.5” rockwool board (R6) instead of the ISO board outside the studs too. If you are going to go to all this trouble it is probably worth adding an airtight/waterproof membrane on the outside too. Siga makes these type of specialized membranes. They have to be properly installed (with the seams sealed) to create the air-tight barrier. After this, your house will be far better insulated and far less drafty. 
I am glad your wife is concerned about off gassing, but I think their is an even bigger concern: fire resistance. Sometimes I feel like a lonely voice on the flammability of foam products. I intend to use rockwool when we add insulation on our rental property for precisely this reason. It is not just the flammability that bothers me, it is the thick black smoke created when foam insulation burns.I will also be adding the Siga membrane for air tightness too. 

Heat pumps for hot-water radiator systems

The question I asked during the webinar was not very clear.  We have a water based heating system with radiators and a boiler fueled by gas.  We also have an air-sourced A/C system with small tubes running throughout the house (a UNICO, high velocity system) without the hanging of mini-split systems in each room.  Is there any way of using an air sourced heating system to heat the hot water in our radiator based heating system (either through the existing boiler or directly to the hot water circulation system)?

Hi Alan, yes is the short answer, you can connect an air-sourced heat pump to a water radiator system. These are sometimes called hydronic systems. But the long answer is a big more nuanced. These type of air-sourced heat-pump to hot-water systems are made by Jaga, Daiken and Spacepak and other manufacturers. I have never used one so I have no particular recommendations. The hot water in a boiler-driven radiator system is typically at 140F. Air-sourced heat pumps have a hard time getting the output side (whether it is air or water) above about 110F. So your radiators will no longer have that piping-hot feel (which may be good or bad – I have nearly burnt myself on hot-water radiators before). This means that it will take longer to heat your house up from cold – like when you come home from a winter vacation. But, as long as the heat output is matched to your heating load your rooms will stay warm, it will just take longer to get warm compared to what you are used to.

Are you thinking of using the UNICO high-velocity system with a heat pump so it would heat in the winter as well as give you AC in summer? We have a similar system in our rental house and I would consider replacing it with a heat pump if such a system exists. Let me know if you find one.

Free AC in my house from heat pump heaters for swimming pools and heat-pump hot -water tanks

On Jul 1, 2020, at 2:29 PM, Chris wrote:I enjoyed the presentation & am looking forward to reading your book. I’m surprised air sealing wasn’t emphasized more. A new version of an old product looks very interesting: AeroBarrier. Instead of replacing 3 basement windows (12 x 32in); I’m getting quotes for Innerglass. Thanks!I haven’t yet read your pool topic & wonder if you’ve seen the pool heater that uses waste central AC heat?

Hi Chris, I am beefing up what I say about air sealing. I have seen houses where air sealing cut 25% off the energy bill. This was not true on my house, where my roof is a rubber membrane and my siding is tongue and groove. I did use a couple of cans of spray foam around the sill plate and weatherstripped the bulkhead door. However, this was not enough for me to be able to measure the cut in the energy bills. However since my house was an exception I will be mentioning it much more in future. See my recent blog post on the issue:

You are well ahead of the pack on your thinking on swimming pool heaters. My pool heater is a standard issue AquaCal heat pump – it is very good and very economical to run. On warm days when we are heating the pool, (say a warm day in May) it exhausts cool dehumidified air into the atmosphere, truly global cooling! My pool is too far from my house to capture this and use it as AC in the house. But if ever built a house with a pool I would design it so that the heat pump for the pool would dump its cool air into the house. Free AC! I do not know of any heat pumps designed to do this but it would be fairly easy (i.e., you would need to hire an HVAC tech to do it) to run the refrigerant line from the heat pump to the head of a mini-split unit in the house. If you do this, please let me know, I would very much like to publicize stories like this. 

While I have not done this on my pool I have done something similar on my house. I do this by opening the vents (where the air filters slot in) in my air-handler units in my house in about May through September. This is when it is warm enough outdoors that I need AC indoors. Rather than turning on the AC, I open the vents on the air handlers in the basement. This draws air out of the basement and into the circulation of the house. I lean the filter pads against the open vent so that the air circulation is still filtered. The air in my basement is cool and dry. Why? My heat-pump hot-water tank cools and dehumidifies the air in the basement. This works because the ceiling of the basement is very well insulated at approx. R38 because I added 12” of fiberglass in between the floor joists. Using this source of cool, dry air allows me to avoid using the AC units for about 4 weeks in the year when previously I had to use them.  It is not a major cost saving but it is a nice one. I like anything I can get for free! If houses were properly designed, things like this and the integration of pool heating with house cooling, would be built in from the start. Sadly these people seem to not talk to each other. 

If you are seriously thinking of putting in a pool then the $15 you spend on Zero Carbon Pool could be one of the best investments you will ever make. I am saving about $3,000 a year. My pool is big, but even on a standard sized 20’x40’ pool you would save about $1,000 a year by following the pool fab four recipe. 

Live webinar “Zero Carbon, Zero Bills” will be at 7pm eastern time Thursday 23rd July 2020. Hosted by the Charles River Green Coalition, part of 350.MA

My next live webinar on how to get paid to cut your carbon footprint will be Thursday, July 23rd 2020 at 7pm Eastern Time. It is hosted by the Charles River Green Coalition. You must register in order to attend this event because that helps reduce the risk of Zoom bombing. You can register here:

What is your family’s carbon footprint from things you buy? Do you buy carbon offsets

  1. In what ways do you cut your non-home carbon footprint, such as that from traveling, driving, products you purchase, etc., if at all?

We minimize the carbon footprint we create before we offset the balance with audited, verified-incremental, carbon offsets that we buy from Cool Effect. I believe that you should cut where you can (e.g., with the fab four) and offset where you can’t. It is neither practical, nor financially justifiable, to cut everything to zero. So , where you can’t cut it makes sense to offset. Offsets are not that expensive. But first, cut…

We are big recyclers. We buy only organic food in the first place. We throw out almost nothing. Any edible waste goes to our chickens. The chickens fertilize our garden making our fruit and vegetable gardens very productive. And they give us eggs and meat. So we eat very well. We are not even close to being self sufficient and do not aspire to being so. But we do love the taste of asparagus in April, rhubarb in May, tomatoes and peas in June, cherries in July, peaches in August, just about everything in September, apples in October and pears even into November. Last October I succeeded in transplanting peppers and tomatoes in pots to be grown indoors (growing under LED grow lights powered by my solar panels) and we were eating them up to Christmas. Anything the chickens won’t eat (onions and citrus for instance) gets composted as does all our paper tissue products. Almost everything else gets recycled and we trash only about a single 50 liter (13 gallon kitchen waste bin’s worth) each week.

I bought a Tesla this year, which I charge from my solar panels and I drive it at 2c per mile compared to my old SUV which cost 10c per mile. The Tesla, when charged by solar panels, has a zero carbon footprint. This covers most of our travel but we still have two gasoline powered cars. When they die they will be replaced with EV’s too.

When we buy things we buy almost always local and sustainable. For examples:

  • for clothing we only buy organic, mostly cotton and almost all grown and sewn in the U.S.
  • for food we buy only organic and usually U.S.-grown only though we do make a few exceptions for some rather excellent Swiss cheese and Italian balsamic vinegar. I used to drink mostly French wine but now drink mostly Californian organic wines. We have visited farms that provide many of our favorite foods like tomatoes grown in Vermont, cheese made on Martha’s Vineyard and blueberries grown in New Jersey.
  • construction products (wood, paints, door hardware and light fixtures) are almost all made in the U.S. including many made in New England. We buy a lot of construction products because we are renovating three properties right now. The wood that will become the flooring in the extension that we are currently building on our house will come from trees that fell down on our land. We had these sawn and they are currently drying out.
  • for cars, our Tesla was made in the U.S., the first American-built car we have ever bought, before this we bought only BMW and Mercedes.
  • we buy almost no gasoline or heating oil and we buy zero electricity as everything is powered by U.S. sunshine. 
  • when we do travel by air (none so far this year, but not by choice) we offset the journey with carbon offsets. Any remaining purchases of gasoline, heating oil, electricity are zeroed out each year as Christmas presents from me to the other family members.
  1. If you purchase carbon offsets, how do you decide where to buy the carbon offsets from? What do you look for when purchasing carbon offsets? What are your purchasing criteria?

I am quite skeptical of the claims of many types of carbon offsets especially those that depend on planting trees in the Amazon. Trees grow really well in the Amazon all on their own. Hence it is hard to say that planting trees is removing more carbon dioxide than nature would remove by herself. I buy my carbon offsets from Cool Effect precisely because they are audited to be incremental. Even then I buy only carbon offsets from a project that captures methane that would otherwise leak into the atmosphere from exposed coal seams on the Ute Indian reservation in Utah. This is genuinely incremental and it is supporting U.S. jobs and Native American tribes. 

  1. If you have purchased carbon offsets, what prompted you to purchase them at the specific moments you’ve made the purchase? How did you decide how many offsets to purchase? With what frequency do you purchase offsets? 

I do it annually to offset any secondary carbon footprint we have from travel. I also offset the carbon footprint of any paperback books I sell (the vast majority are sold as e-books) and any T-shirts I sell in the Zero Carbon business. The T-shirts have the lowest carbon footprint possible because they are made from unbleached, un-dyed organic cotton grown and sewn in the USA. However, I still offset the small carbon footprint they still have.

What if I live in the South? Does HITS work in a hot climate?

The fab four recipe for cutting your carbon footprint will work in the southern half of the country as well as in the northern half.

From the point of view of the laws of physics a house is just a box. It has a top, a bottom and four sides. Energy comes into the box from electricity and heating fuel. Energy goes out through the walls, windows, attic and floor/basement. This is the same whether we call the box a house, an apartment block, an office or a factory.

In a cold climate you need to keep the heat in. In a hot climate you need to keep the heat out. The answer is insulation and triple-glazed low-E windows in both cases. So these parts of HITS (the I and the T) are the same in cold climate or a hot climate.

However, a heat pump (the H in HITS) in cooling mode is the same efficiency as an air-conditioner. It is only in heating mode that a heat pump has four times the efficiency of an oil-fired or natural gas-fired furnace or boiler. So the year-round gain in heating/cooling efficiency is bigger in a cold climate than a hot climate.

Solar panels (the S in HITS) work better in the southern half of the US because there is much more sun there than in the northern half. In fact, where we live in Massachusetts, we have a rather poor solar crop to harvest . The desert southwest has almost 40% more solar energy per year. This makes solar power about 40% cheaper per kilowatt hour in the southwest compared to Massachusetts. See this map from the NREL:

In addition to how much sunshine you have in your area, the price you pay for utility electricity will have a big impact on the payback period for solar panels. High electricity prices make the payback period on solar panels faster, because you are saving more money per kilowatt-hour of electricity generated by your solar panels.

Other than Hawaii, which has very high electricity prices, the highest cost for electricity in the U.S. is in New England, California and Alaska where you will pay about 20c per kilowatt-hour. In a band of states running down the center of the country from North Dakota to Louisiana, electricity is about 10c per kilowatt-hour.

So overall, with insulation and low-E triple-glazed windows cutting your carbon footprint and utility bills across the entire country and with the lower benefit of using heat pumps for heating in the southern half of the country combined with the higher solar production in the southern half of the country, HITS will benefit you no matter where you live. The recipe just needs to be fine tuned to your exact location and local financial subsidies.